KUKA Robot Group

Software

KUKA.Load 3.1

Operating Instructions

Issued: 15.03.2007 Version: 1.1
Contents

1 **Introduction** ... 5
1.1 Target group ... 5
1.2 Representation of warnings and notes ... 5
1.3 Trademarks ... 5

2 **Product description** ... 7
2.1 Overview of KUKA.Load ... 7
2.2 Load data .. 7
2.2.1 Loads on the robot ... 8
2.2.2 Static overloading of the robot .. 9
2.2.3 Dynamic overloading of the robot .. 9

3 **Installation** .. 11
3.1 System requirements ... 11
3.2 Installing KUKA.Load .. 11
3.3 Uninstalling KUKA.Load .. 11

4 **Operation** .. 13
4.1 Starting KUKA.Load ... 13
4.2 User interface for KUKA.Load ... 13
4.3 Creating a new project .. 14
4.4 Determining the robot for the payload .. 14
4.5 Verifying the loads on the robot .. 16
4.6 Using the Sum Up Tools function ... 16
4.7 Saving the robot in the project ... 17
4.8 Opening the robot from the project ... 17
4.9 Creating the Sign Off Sheet .. 17

5 **KUKA Service** ... 21
5.1 Requesting support ... 21
5.2 KUKA Customer Support ... 21

Index ... 27

1 Introduction

1.1 Target group

This documentation is aimed at users with the following knowledge and skills:
- Knowledge of robotics
- Advanced knowledge of dynamic and static loading on the robot

For optimal use of our products, we recommend that our customers take part in a course of training at KUKA College. Information about the training program can be found at www.kuka.com or can be obtained directly from our subsidiaries.

1.2 Representation of warnings and notes

Safety

Warnings marked with this pictogram are relevant to safety and must be observed.

- **Danger!**
 This warning means that death, severe physical injury or substantial material damage will occur, if no precautions are taken.

- **Warning!**
 This warning means that death, severe physical injury or substantial material damage may occur, if no precautions are taken.

- **Caution!**
 This warning means that minor physical injuries or minor material damage may occur, if no precautions are taken.

Notes

Notes marked with this pictogram contain tips to make your work easier or references to further information.

- **Tips to make your work easier or references to further information.**

1.3 Trademarks

- **Windows** is a trademark of Microsoft Corporation.
- **Excel** is a trademark of Microsoft Corporation.
2 Product description

2.1 Overview of KUKA.Load

Functions

KUKA.Load is a software product with the following functions:

- Verifying a load situation:
 - Verifying a robot for a given load
 - Selecting a robot for a given load
- Calculating the load for several tools mounted simultaneously on the flange
- Generating a message in the event of static overloading
- Generating a message in the event of dynamic overloading
- Creating acceptance reports (Sign Off Sheets)
- Managing projects with a number of robots
- Data transfer to Excel (form is write-protected)

General process forces cannot be taken into consideration by the software.

Description

Fig. 2-1: KUKA.Load user interface

1 Data entry fields for customer details and robot type
2 Data entry fields for payloads on the flange
3 Tabs for supplementary loads A1, A2, A3
4 Calculated load data diagram

2.2 Load data

The load data are factored into the calculation of the paths and accelerations and help to optimize the cycle times. The load data must be entered in the robot controller.
2.2.1 Loads on the robot

Description

Various loads can be mounted on the robot:

- Payload on the flange
- Supplementary load on axis 3
- Supplementary load on axis 2
- Supplementary load on axis 1

All loads added together give the overall load.

Warning!

If a robot is operated with incorrect load data or an unsuitable load, this can result in danger to life and limb and/or substantial material damage to the robot system.

There is a payload diagram for every robot. It can be used to check quickly whether the payload could be suitable for the robot. The diagram is not, however, a substitute for checking the payload with KUKA.Load.

Fig. 2-2: Loads on the robot

1 Payload
2 Supplementary load on axis 3 3 Supplementary load on axis 2
4 Supplementary load on axis 1
Parameters

The load data are defined using the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>m</td>
</tr>
<tr>
<td>Distance to the center of gravity</td>
<td>L_x, L_y, L_z</td>
</tr>
<tr>
<td>Mass moments of inertia at the center of gravity</td>
<td>I_{xx}, I_{yy}, I_{zz}</td>
</tr>
</tbody>
</table>

Reference systems of the X, Y and Z values for each load:

<table>
<thead>
<tr>
<th>Load</th>
<th>Reference system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary load A1</td>
<td>ROBROOT coordinate system</td>
</tr>
<tr>
<td>Supplementary load A2</td>
<td>A2 = -90°</td>
</tr>
<tr>
<td>Supplementary load A3</td>
<td>FLANGE coordinate system</td>
</tr>
<tr>
<td>Payload</td>
<td>A4 = 0°, A5 = 0°, A6 = 0°</td>
</tr>
</tbody>
</table>

Sources

Load data can be obtained from the following sources:

- Manufacturer information
- Manual calculation
- Software option KUKA.LoadDetect
- CAD programs

2.2.2 Static overloading of the robot

Description

If the permissible motor braking torques or the motor holding torques under servo control are exceeded while the robot is at a standstill, this is referred to as static overloading of the robot. This overloading can be prevented by means of the following measures:

- Shifting the position of the center of gravity towards the flange center point
- Using a robot with a higher rated payload
- Reducing the mass/weight

The KUKA Robot Group must always be consulted in the case of overloading.

2.2.3 Dynamic overloading of the robot

Description

If the maximum permissible kinetic energy values are exceeded by means of excessive mass moments of inertia, this is referred to as dynamic overloading of the robot. This overloading can be prevented by means of the following measures:

- Reduce the mass moments of inertia by:
 - Using a more geometrically compact load
 - Reducing the mass
 - Using a robot with a higher rated payload
The KUKA Robot Group must always be consulted in the case of overloading.
3 Installation

3.1 System requirements

Hardware
- PC with Pentium processor, min. 166 GHz
- 512 MB RAM
- Graphics card with a resolution of at least 800 x 600 pixels

Software
- Windows 95, WinNT
- Windows 2000 or Windows XP
- Microsoft Excel 97 or higher for:
 - Sign Off Sheet
 - Project creation

3.2 Installing KUKA.Load

Precondition
- Local administrator rights on the PC
- All Windows applications currently running must be closed.
- Any existing versions of KUKA.Load must be uninstalled. Updating without uninstallation is not possible.

Procedure
2. Start the Setup program.
3. Press OK to continue.
4. If required, change the installation directory with Change Directory.
5. Click on to start the installation.

3.3 Uninstalling KUKA.Load

Precondition
- Local administrator rights on the PC
- All Windows applications currently running must be closed.

Procedure
1. Click on Control Panel in the Windows Start menu.
2. Click on Software.
3. Select KUKA.Load from the list.
4. Click on Change/Remove to uninstall the software.

Warning!
The software must not be installed on the robot controller.
4 Operation

4.1 Starting KUKA.Load

Procedure

- Start the program via the menu sequence Start > Programs > KUKA > KUKA_Load.

4.2 User interface for KUKA.Load

Description

![KUKA.Load user interface diagram](image1)

Fig. 4-1: KUKA.Load user interface

1. Data entry fields for customer details and robot type
2. Data entry fields for payloads on the flange
3. Tabs for supplementary loads A1, A2, A3
4. Calculated load data diagram

![KUKA.Load toolbar diagram](image2)

Fig. 4-2: KUKA.Load toolbar

1. Exit program
2. Print current load data with the default printer
3. Create acceptance report (Sign Off Sheet in Excel)
4. Create new project
5. Open project
6. Save project
7. Display current project (Excel table)
8. Close current project (Excel table)
4.3 Creating a new project

Description
A KUKA.Load project can be used to manage and verify the load data for a number of robots. The project is a write-protected Excel file.

Procedure
1. Create a new project using the menu sequence File > New.
2. Enter the customer details in the General data window and select the measurement system.
3. Press OK to continue.
 Now the analysis of the load data can be started.

After analysis and project data entry, always save KUKA.Load before closing. New analyses are not automatically saved in an open project.

4.4 Determining the robot for the payload

Precondition
Load data are known.

Procedure
1. In the General robot data area enter the statistical data (customer, serial number, etc.).
2. Select the type of robot in the General robot data area under Robot type.
3. Click on the button Default all to reset all values of the robot type.
4. Enter the values for the payload in the area EOA tooling parameters:
 - Mass
 - Distance to the center of gravity (L_X, L_Y, L_Z)
 - Mass moment of inertia at the center of gravity (I_{XX}, I_{YY}, I_{ZZ})

 If more than one component is mounted on the flange at the same time, use the Sum Up Tools function.

5. Enter the values for the supplementary loads in the tabs Add. load data A1... A3:
 - Mass
 - Distance to the center of gravity (L_X, L_Y, L_Z)
 - Mass moment of inertia at the center of gravity (I_{XX}, I_{YY}, I_{ZZ})

6. Click on the Analyse button to verify the load data.
 The result is displayed in the Analysis report area.

If the load data entered are permissible for the selected robot, the result Passed is displayed:

Fig. 4-3: KUKA.Load Analysis report

The robot selected is suitable for the specified load data.
If the selected robot is not suitable for the specified load data, a static overload is shown in the payload diagram and/or a static/dynamic overload is shown in the bar chart.

- **Payload diagram:**

 ![Payload Diagram](image)

 Fig. 4-4: KUKA.Load payload diagram

 The calculated point lies outside the limits of the payload diagram. The robot is statically overloaded.

- **Bar chart:**

 ![Bar Chart](image)

 Fig. 4-5: KUKA.Load bar chart

 Axes A4 - A6 exceed the 100% limit of the bar chart. The robot is statically and/or dynamically overloaded.

If the selected robot is not suitable:

1. Select a different type of robot in the **General robot data** area under **Robot type**.
2. Click on the **Analyse** button to verify the load data.
3. In the event of repeated negative results, please consult the KUKA Robot Group.
4.5 Verifying the loads on the robot

Precondition ■ Load data are known.

Procedure 1. In the General robot data area enter the statistical data (customer, serial number, etc.).
2. Select the type of robot in the General robot data area under Robot type.
3. Click on the button Default all to reset all values of the robot type.
4. Enter the values for the payload in the area EOA tooling parameters:
 ■ Mass
 ■ Distance to the center of gravity (LX, LY, LZ)
 ■ Mass moment of inertia at the center of gravity (I_{XX}, I_{YY}, I_{ZZ})

If more than one component is mounted on the flange at the same time, use the Sum Up Tools function.

5. Enter the values for the supplementary loads in the tabs Add. load data A1... A3:
 ■ Mass
 ■ Distance to the center of gravity (LX, LY, LZ)
 ■ Mass moment of inertia at the center of gravity (I_{XX}, I_{YY}, I_{ZZ})

6. Click on the Analyse button to verify the load data.
 The result is displayed.

4.6 Using the Sum Up Tools function

The Sum Up Tools function can be used to calculate the total load from the known values of a number of components mounted simultaneously on the flange (e.g. tool and workpiece). For this, the data for each component are entered separately.

Procedure 1. Click on the Sum Up Tools button.
The Tool Summation dialog appears.

Fig. 4-7: KUKA.Load, Tool Summation dialog

2. Enter the values for the payload in the **Single Tool Data** area:
 - Mass
 - Distance to the center of gravity (LX, LY, LZ)
 - Mass moment of inertia at the center of gravity (I_{XX}, I_{YY}, I_{ZZ})

3. Add the values to the list using the **Add Tool Data** button.
 The values appear in the window area.

4. Repeat steps 2 and 3 for the next component.

5. When all the values are displayed in the window, start the calculation with **OK**.
 The total load is calculated.

4.7 Saving the robot in the project

Precondition
- Project is created and open.
- The payload has been verified.

Procedure
1. Select the menu sequence **Edit > Add Robot** to open the dialog **Save current payload data record**.
2. Enter or accept the serial number of the robot and the customer details.
3. Use the **Save** button to save the data set in the project.

4.8 Opening the robot from the project

Precondition
- The project is open.

Procedure
1. Select the menu sequence **Edit > Choose Robot** to open the dialog **Choose robot to analyse**.
2. Select the robot via the serial number and continue with **OK**.

4.9 Creating the Sign Off Sheet

Precondition
- Project is created and open.
- The payload has been verified.
1. Select the menu sequence Edit > Sign Off Sheet to open the dialog Component Sign Off Sheet.

2. Enter or accept the serial number of the robot and the customer details.

3. Optionally: Enter the orientation of the principal inertia axes of the center of gravity in the EOA tooling orientation area.

4. Select the following options in the Customer confirmation area:
 - Load data saved in the controller:
 - Correct load data entered
 - Work with standard settings
 - Robot mastered:
 - Yes
 - No
 - Weight / mass established by:
 - Measured
 - Determined with KUKA.LoadDetect
 - Calculated
 - Load data established by:
 - Measured
 - Determined with KUKA.LoadDetect
 - Calculated

5. Create the Component Sign Off Sheet using the button Create CSO-Sheet.
When submitting the Sign Off Sheet for checking by the KUKA Robot Group, please always include the project database (Excel).
5 KUKA Service

5.1 Requesting support

Introduction

The KUKA Robot Group documentation offers information on operation and provides assistance with troubleshooting. For further assistance, please contact your local KUKA subsidiary.

Faults leading to production downtime are to be reported to the local KUKA subsidiary within one hour of their occurrence.

Information

The following information is required for processing a support request:

- Model and serial number of the robot
- Model and serial number of the controller
- Model and serial number of the linear unit (if applicable)
- Version of the KUKA System Software
- Optional software or modifications
- Archive of the software
- Application used
- Any external axes used
- Description of the problem, duration and frequency of the fault

5.2 KUKA Customer Support

Availability

KUKA Customer Support is available in many countries. Please do not hesitate to contact us if you have any questions.

Argentina

Ruben Costantini S.A. (Agency)
Luis Angel Huergo 13 20
Parque Industrial
2400 San Francisco (CBA)
Argentina
Tel. +54 3564 421033
Fax +54 3564 428877
ventas@costantini-sa.com

Australia

Marand Precision Engineering Pty. Ltd. (Agency)
153 Keys Road
Moorabbin
Victoria 31 89
Australia
Tel. +61 3 8552-0600
Fax +61 3 8552-0605
robotics@marand.com.au
Austria
KUKA Roboter GmbH
Vertriebsbüro Österreich
Regensburger Strasse 9/1
4020 Linz
Austria
Tel. +43 732 784752
Fax +43 732 793880
office@kuka-roboter.at
www.kuka-roboter.at

Belgium
KUKA Automatisering + Robots N.V.
Centrum Zuid 1031
3530 Houthalen
Belgium
Tel. +32 11 516160
Fax +32 11 526794
info@kuka.be
www.kuka.be

Brazil
KUKA Roboter do Brasil Ltda.
Avenida Franz Liszt, 80
Parque Novo Mundo
Jd. Guançã
CEP 02151 900 São Paulo
SP Brazil
Tel. +55 11 69844900
Fax +55 11 62017883
info@kuka-roboter.com.br

Chile
Robotec S.A. (Agency)
Santiago de Chile
Chile
Tel. +56 2 331-5951
Fax +56 2 331-5952
robotec@robotec.cl
www.robotec.cl

China
KUKA Flexible Manufacturing Equipment (Shanghai) Co., Ltd.
Shanghai Qingpu Industrial Zone
No. 502 Tianying Rd.
201712 Shanghai
P.R. China
Tel. +86 21 5922-8652
Fax +86 21 5922-8538
Franz.Poeckl@kuka-sha.com.cn
www.kuka.cn
France
KUKA Automatisme + Robotique SAS
Techvallée
6 Avenue du Parc
91140 Villebon s/Yvette
France
Tel. +33 1 6931-6600
Fax +33 1 6931-6601
commercial@kuka.fr
www.kuka.fr

Germany
KUKA Roboter GmbH
Blücherstr. 144
86165 Augsburg
Germany
Tel. +49 821 797-4000
Fax +49 821 797-1616
info@kuka-roboter.de
www.kuka-roboter.de

Hungary
KUKA Robotics Hungaria Kft.
Fő út 140
2335 Taksony
Hungary
Tel. +36 24 501609
Fax +36 24 477031
info@kuka-robotics.hu

India
KUKA Robotics, Private Limited
621 Galleria Towers
DLF Phase IV
122 002 Gurgaon
Haryana
India
Tel. +91 124 4148574
info@kuka.in
www.kuka.in

Italy
KUKA Roboter Italia S.p.A.
Via Pavia 9/a - int.6
10098 Rivoli (TO)
Italy
Tel. +39 011 959-5013
Fax +39 011 959-5141
kuka@kuka.it
www.kuka.it
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Email</th>
</tr>
</thead>
</table>
| Korea | KUKA Robot Automation Korea Co. Ltd.
 | 4 Ba 806 Sihwa Ind. Complex
 | Sung-Gok Dong, Ansan City
 | Kyunggi Do
 | 425-110 Korea
 | Tel. +82 31 496-9937 or -9938
 | Fax +82 31 496-9939
 | info@kukakorea.com |
| Malaysia| KUKA Robot Automation Sdn Bhd
 | South East Asia Regional Office
 | No. 24, Jalan TPP 1/10
 | Taman Industri Puchong
 | 47100 Puchong Selangor Malaysia
 | Tel. +60 3 8061-0613 or -0614
 | Fax +60 3 8061-7386
 | info@kuka.com.my |
| Mexico | KUKA de Mexico S. de R.L. de C.V.
 | Rio San Joaquin #339, Local 5
 | Colonia Pensil Sur
 | C.P. 11490 Mexico D.F. Mexico
 | Tel. +52 55 5203-8407
 | Fax +52 55 5203-8148
 | info@kuka.com.mx |
| Norway | KUKA Sveisæt + Roboter
 | Bryggeveien 9
 | 2821 Gjøvik Norway
 | Tel. +47 61 133422
 | Fax +47 61 186200
 | geir.ulsrud@kuka.no |
| Portugal| KUKA Sistemas de Automatización S.A.
 | Rua do Alto da Guerra nº 50
 | Armazém 04
 | 2910 011 Setúbal Portugal
 | Tel. +351 265 729780
 | Fax +351 265 729782
 | kuka@mail.telepac.pt |
Russia

KUKA-VAZ Engineering
Jushnoje Chaussee, 36 VAZ, PTO
445633 Togliatti
Russia
Tel. +7 8482 391249 or 370564
Fax +7 8482 736730
Y.Klychkov@VAZ.RU

South Africa

Jendamark Automation LTD (Agency)
76a York Road
North End
6000 Port Elizabeth
South Africa
Tel. +27 41 391 4700
Fax +27 41 373 3869
www.jendamark.co.za

Spain

KUKA Sistemas de Automatización S.A.
Pol. Industrial
Torrent de la Pastera
Carrer del Bages s/n
08800 Vilanova i la Geltrú (Barcelona)
Spain
Tel. +34 93 814-2353
Fax +34 93 814-2950
Comercial@kuka-e.com
www.kuka-e.com

Sweden

KUKA Svetsanläggningar + Robotar AB
A. Odhners gata 15
421 30 Västra Frölunda
Sweden
Tel. +46 31 7266-200
Fax +46 31 7266-201
info@kuka.se

Switzerland

KUKA Roboter Schweiz AG
Riedstr. 7
8953 Dietikon
Switzerland
Tel. +41 44 74490-90
Fax +41 44 74490-91
info@kuka-roboter.ch
www.kuka-roboter.ch
Taiwan
KUKA Robot Automation Taiwan Co. Ltd.
136, Section 2, Huanjung E. Road
Jungli City, Taoyuan
Taiwan 320
Tel. +886 3 4371902
Fax +886 3 2830023
info@kuka.com.tw
www.kuka.com.tw

Thailand
KUKA Robot Automation (M)SdnBhd
Thailand Office
c/o Maccall System Co. Ltd.
49/9-10 Soi Kingkaew 30 Kingkaew Road
Tt. Rachatheva, A. Bangpli
Samutprakarn
10540 Thailand
Tel. +66 2 7502737
Fax +66 2 6612355
atika@ji-net.com
www.kuka-roboter.de

UK
KUKA Automation + Robotics
Hereward Rise
Halesowen
B62 8AN
UK
Tel. +44 121 585-0800
Fax +44 121 585-0900
sales@kuka.co.uk

USA
KUKA Robotics Corp.
22500 Key Drive
Clinton Township
48036 Michigan
USA
Tel. +1 866 8735852
Fax +1 586 5692087
info@kukarobotics.com
www.kukarobotics.com
Index

C
Center of gravity 9
Control Panel 11
Creating a new project 14
Creating the Sign Off Sheet 17

D
Determining the robot for the payload 14
Dynamic overloading of the robot 9

G
Graphics card 11

I
Installation 11
Installation, KUKA.Load 11
Introduction 5

K
KUKA Customer Support 21

L
Load data 7
Loads on the robot 8

M
Mass 9
Mass moments of inertia 9

O
Opening the robot from the project 17
Operation 13
Overall load 8

P
Payloads 8
Processor 11
Product description 7

R
RAM 11

S
Safety instructions 5
Saving the robot in the project 17
Service, KUKA Roboter 21
Sign Off Sheet 17
Starting, KUKA.Load 13
Static overloading of the robot 9
Support request 21
System requirements, KUKA.Load 11

T
Target group 5
Trademarks 5
Training program 5

U
Uninstallation, KUKA.Load 11
User interface, KUKA.Load 13

V
Verifying the loads on the robot 16

W
Warnings 5
Windows 11